본문 바로가기
동물, 미생물, DNA, 분자.. 등등

생물에서 발견되는 초고도 복잡성의 기원은? : 나방, 초파리, 완보동물, 조류와 포유류의 경이로움

by ♤ ♤ 2021. 5. 17.

생물에서 발견되는 초고도 복잡성의 기원은? 

: 나방, 초파리, 완보동물, 조류와 포유류의 경이로움

(Clever Critters)

 

      작은 생물들이 응용수학, 물리학, 유전학에 대한 지식을 필요로 하는 경이로운 일들을 수행하고 있었다.

 

나방 : 곤충은 어둠 속에서 어떻게 볼 수 있을까? 몇몇 나방(moths)들과 벌(bees)들은 단지 약간의 광자(photons)만으로도 물체를 보는 것이 가능한 것처럼 보였다. 곤충은 신체적으로 불가능한 일을 해내고 있는 것 같다고, 룬드(Lund) 대학의 동물학 교수인 에릭 워런트(Erik Warrant)는 The Conversation(2017. 3. 13) 지에서 말했다. 그는 밝은 색 때문에 곤충 세계의 벌새(hummingbirds)라고 불리는 박각시나방(hawkmoths)를 연구해왔다. 나방들은 더 많은 빛을 모으기 위해서, 카메라의 셔터를 오랫동안 열어두는 것과 같은, 광자 가중(summation)을 수행할 수 있었다. 이 방법은 예민함은 떨어지지만, 동료를 찾거나 포식자를 피하는 데에는 충분하다고 워런트는 말했다. ”사실, 이러한 신경 메커니즘 덕분에, 박각시나방은 그렇지 않은 것보다 약 100 배는 더 희미한 빛도 볼 수 있다.”

초파리 : 이 작은 쌍시류 곤충은 그들의 곡예비행에서 ”영상 흐름(optic flow, 광학 흐름)”이라 불리는 속성을 사용한다. Current Biology(2017. 3. 20) 지에 따르면, 빠른 비행은 광자 잡음(photon noise)을 발생시키고, 암흑처럼 신호 대 잡음비(signal-to-noise ratio)를 낮춘다. 이것을 해결하기 위해서, 초파리(fruit flies)는 제미 테오발드(Jamie Theobald)가 기술했던, ”선택적 가중(facultative summation)”이라는 기술을 사용하고 있었다 :

광수용체(photoreceptors)는 빠른 움직임에 대처하기 위해서, 일시적으로 빠른 동력학을 필요로 한다. 더불어 이상적인 필터링은 공간적으로 일어나야 한다. 초파리가 배경 영상흐름에 의한 필터링을 구현하는지를 확인하기 위해서, 우리는 주파수-의존 방향전환(frequency-dependent steering)을 테스트한 결과, 흐름이 일시적으로 높은 공간 주파수 반응을 제거한다는 사실을 발견했다. 이 효과는 전방에서 측방 시각 영역으로 증가하였고, 흐름 방향과 평행하게 작용하였으며, 일시적이지 않은, 고도의 공간적 반응을 필터링하고 있었다. ‘선택적 가중’은 빠른 비행 동안에 감도를 향상시킴으로써 시각 정보를 최대화하고 있을 수 있었다. 하지만 초파리가 정지되어 있을 때는 시력의 정밀성은 떨어질 수 있다.

 

완보동물(Tardigrades, 물곰)은 건조 상태에서도 오랜 기간 생존할 수 있다.Live Science(2017. 3. 17) 지는 완보동물이 건조 상태에서 살아남기 위해서, 독특한 '본래 무질서한 단백질(intrinsically disordered proteins)' 또는 TDPs의 특별한 공급을 어떻게 유지하는지 설명하고 있었다. ”TDPs(tardigrade-specific intrinsically disordered proteins)는 트레할로오스(trehalose, 이당류 중의 하나)가 유리(glass)와 같은 구조를 형성함으로써, 탈수 상태에 있는 세포를 보호하여, 다른 동물을 보호하는 것과 동일한 방식으로 완보동물을 보호한다.”

*관련기사 : 극강 동물 ‘물곰’ 유전자 분석 (2017. 3. 22. Science Times)
http://www.sciencetimes.co.kr/?news=극강-동물-물곰-유전자-분석
냉동된 지 30년 만에 부활해 새끼도 낳은 물곰의 비밀 (2016. 1. 24. 나우뉴스)
http://nownews.seoul.co.kr/news/newsView.php?id=20160124601013
Tardigrades Use Intrinsically Disordered Proteins to Survive Desiccation. Mol Cell. 2017 Mar 16;65(6):975-984.e5. doi: 10.1016/j.molcel.2017.02.018.
https://www.ncbi.nlm.nih.gov/pubmed/28306513

 

조류와 포유류들은 더 많은 털과 깃털을 성장시키고, 재생산하고, 다른 중요한 생체 기능들을 수행해야 할 시기를 파악해야할 필요가 있다. PhysOrg(2017. 3. 6) 지는 브리스톨 대학(University of Bristol)의 과학자들이 양(sheep)에서, 일광의 길이에 의존하는 다른 효소들과 유전자들의 스위치를 켜는, 호르몬 멜라토닌(melatonin)의 분비와 밤에 만들어지는 것을 어떻게 모니터링 했는지를 보도하고 있었다. 이것은 뇌하수체 근처의 혈관에 영향을 미치고 있었으며, 번식력과 같은 기능을 조절하는 뇌하수체의 다른 부분에 신호를 보내고 있었다.

 

누가 이 작은 동물들에게 이러한 기술을 가르쳐주었는가? 이러한 기술을 수행하기 위해서는 양자역학(quantum mechanics)과 미적분학(calculus)을 알고 있어야 한다. 곤충들은 첨단 광학(advanced optics), 정보기술(information technology), 생체역학(biomechanics)을 사용하고 있었다. 이러한 것들이 모두 무작위적인 돌연변이로 우연히 생겨날 수 있었을까? 작은 곤충들은 무슨 일이 일어나는지를 감지할 수 있는 경이로운 감각기관들을 가지고 있었다. ”이들이 수행하고 있는 기술은 아무에게도 배울 수 없는 놀라운 것들이다.”

 

 

번역 - 미디어위원회

링크 - http://crev.info/2017/03/clever-critters/

출처 - CEH, 2017. 3. 21.

728x90

댓글0